用户登录

试题库导航

教案库导航

课件库导航

素材库导航

相似资源下载


资源类别: 教案库 > 数学教案 > 高二数学教案
教材版本: 人教版
文件格式: WORD文档
文件大小: 174KB
地        区:
年        份:
更新时间: 2009-09-25
所需积分: 0点
上传用户: candy
下载地址: 点击下载(不支持迅雷等软件,请关闭相关下载软件后直接点击下载)
下载次数:
      友情提醒:(1)新用户注册、激活成功后一律免费赠送5个积分。点击这里注册。(2)下载成功后,12小时内本资源可免费多次下载。

获取积分的办法:
      1.上传教学资源得积分或兑换现金,详情请见:考试周刊杂志社会员上传教学资源奖励办法(试行)
      2.购买积分,具体请见:考试周刊杂志社积分购买办法(暂行)
      
  资源简介
    课 题: 10.5随机事件的概率 (一)
    教学目的:
    1.了解必然事件,不可能事件,随机事件的概念
    2.理解随机事件在大量重复试验的情况下,它的发生呈现的规律性
    3.掌握概率的统计定义及概率的性质
    教学重点:随机事件的概念及其概率
    教学难点:随机事件的概念及其概率
    授课类型:新授课
    课时安排:1课时
    教 具:多媒体、实物投影仪
    内容分析:
    “概率”是新课程高考的新增内容,由于概率问题与人们的实际生活有着紧密的联系,对指导人们从事社会生产、生活具有十分重要的意义,所以概率这个章节也成了近几年新课程高考的一个热点
    概率所研究的对象具有抽象和不确定性等特点,学生很难用已获得的解决确定性数学问题的思维方法,去求得“活” 的概率问题的解,这就决定了概率教学中教师的教学方式和学生的学习方式的转变,学生不能沿用传统的记忆加形成性训练的机械学习方法去学习,教师不能沿用传统的 给予加示范性的灌输式教学方法去教学,教师必须引导学生经历概率模型的构建过程和模型的应用过程,从中获得问题情境性的情境体验和感悟,才能面对“活”的概率问题为此,在概率教学中,我们必须做到:
    1.创设情境,引导经历概念和模型构建的过程.概率涉及到很多的新概念和模型,要使这些新概念变为学生自己的知识,必须与学生已有的知识经验建立起广泛的联系这就要求我们在概念和模型的教学过程中,必须根据学生的生活,学习经验,创设丰富的问题情境,引导学生自己去生成概念、提炼模型,发现计算的法则,教师且不可因教学时间紧而淡化概念、模型构建的过程否则,学生因获得孤立的概念、模型,无法在纷繁的问题情景中去辨认,从而导致解题思想僵化
    2.构建知识网络,引导把握各知识点间的联系与区别. 学生能否准确迅速地运用概念和模型解题,主要取决于他们对概念和各模型之间的联系和区别是否真正把握,我们平时说“夯实基础,提高能力”,从本质上说就是引导学生把握知识间的联系和区别,即教材的知识结构是否转化为自己的认知结构因此,在概率的教学过程中,教师要随时引导学生将获得的新概念、新模型和已有的概念和模型进行对照和比较,找出它们之间的联系和区别,优化自己的认知结构
    3.充分展示建模的思维过程,引导感悟模型提取的思维机制. 概率问题求解的关键是寻找它的模型,只要模型一找到,问题便迎刃而解而概率模型的提取往往需要经过观察、分析、归纳、判断等复杂的思维过程,常常因题设条件理解不准,某个概念认识不清而误入歧途因此,在概率应用问题的教学中,教师应随时充分展示建模的思维过程,使学生从问题的情境中感悟出模型提取的思维机制,获取模型选取的经验,久而久之,感受多了,经验丰富了,建模也就容易了,解题的正确率就会大大提高
    教学过程:
    一、引入:
    1. 观察下列事件发生与否,各有什么特点?
    (1)导体通电时,发热;
    (2)抛一块石头,下落;
    (3)在常温下,焊锡熔化;
    (4)在标准大气压下且温度低于时,冰融化;
    (5)掷一枚硬币,出现正面;
    (6)某人射击一次,中靶
    分析结果:
    (1)(2)是必然要发生的,
    (3)(4)不可能发生,
    (5)(6)可能发生也可能不发生
    2.(1)“抛一石块,下落”.
    (2)“在标准大气压下且温度低于0℃时,冰融化”;
    (3)“某人射击一次,中靶”;
    (4)“如果a>b,那么a-b>0”;
    (5)“掷一枚硬币,出现正面”;
    (6)“导体通电后,发热”;
    (7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;
    (8)“某电话机在1分钟内收到2次呼叫”;
    (9)“没有水份,种子能发芽”;
    (10)“在常温下,焊锡熔化”;
    分析结果:
    事件(1)(4)、(6)都是一定会发生的事件,是必然要发生的.
    事件(2)、(9)、(10)是一定不发生的事件.
    事件(3)、(5)、(7)、(8)有可能发生,也有可能不发生
    3.男女出生率
    一般人或许认为:生男生女的可能性是相等的,因而推测出男婴和女婴的出生数的比因当是1:1,可事实并非如此.
    公元1814年,法国数学家拉普拉斯(Laplace 1794---1827)在他的新作<<概率的哲学探讨>>一书中,记载了一下有趣的统计.他根据伦敦,彼得堡,柏林和全法国的统计资料,得出了几乎完全一致的男婴和女婴出生数的比值是22:21,即在全体出生婴儿中,男婴占51.2%,女婴占48.8%.可奇怪的是,当他统计1745---1784整整四十年间巴黎男婴出生率时,却得到了另一个比是25:24,男婴占51.02%,与前者相差0.14%.对于这千分之一点四的微小差异!拉普拉斯对此感到困惑不解,他深信自然规律,他觉得这千分之一点四的后面,一定有深刻的因素.于是,他深入进行调查研究,终于发现:当时巴黎人”重男轻女”,又抛弃女婴的陋俗,以至于歪曲了出生率的真相,经过修正,巴黎的男女婴的出生比率依然是22:21.
    4.中数字出现的稳定性(法格逊猜想)
    在的数值式中,各个数码出现的概率应当均为1/10.随着计算机的发展,人们对的前一百万位小数中各数码出现的频率进行了统计,得到的结果与法格逊猜想非常吻合.
    5.概率与
    布丰曾经做过一个投针试验.他在一张纸上画了很多条距离相等的平行直线,他将小针随意地投在纸上,他一共投了2212次,结果与平行直线相交的共有704根.总数2212与相交数704的比值为3.142.布丰得到地更一般的结果是: 如果纸上两平行线间的距离为,小针的长为,投针次数为,所投的针中与平行线相交的次数为,那么当相当大时有: .
    后来有许多人步布丰的后尘,用同样的方法计算值.其中最为神奇的是意大利数学家拉兹瑞尼(Lazzerini ).他在1901年宣称进行了多次投针试验得到了的值为3.1415929.这与的精确值相比,一直到小数点后七位才出现不同!用如此巧妙的方法,求到如此高精确的值,这真实天工造物!
    二、讲解新课:
    1
  免责申明
           1、[考试周刊杂志社-教学资源库]上的所有教学资料均属作者自愿提供和网友间收集整理推荐,仅限本站网友或注册用户间的相互讨论、交流、学习和研究之用,本网站不承担任何形式的版权、著作权和民事责任。如发现某项教学素材、教学课件或教学资料确有侵犯你的版权,请来信(admin_kszk@vip.163.com)指出,本站负责立即改正或删除。
           2、访问[考试周刊杂志社-教学资源库]的用户必须明白,[考试周刊杂志社-教学资源库]对提供下载的教学资源不拥有任何权利,其版权归该资源的合法拥有者所有。
           3、[考试周刊杂志社-教学资源库]保证站内提供的所有可下载资源都是按“原样”提供,本站未做过任何改动;但本网站不保证本站提供的下载资源的准确性、安全性和完整性;同时本网站也不承担用户因使用这些下载资源对自己和他人造成任何形式的损失或伤害。
           4、未经[考试周刊杂志社]的明确许可,任何人不得大量链接本站下载资源;不得复制或仿造本网站。本网站对其自行开发的或和他人共同开发的所有内容、技术手段和服务拥有全部知识产权,任何人不得侵害或破坏,也不得擅自使用。